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Overview of Carmichael et al. (2019)

• Develop methods to understand connections between complex and

differing modalities of data

• Histology and genetics

• Data integration using angle-based joint and individual variation

explained (AJIVE)

• Directly explore similarities and differences between these two

modalities

• Image feature extraction with convolutional neural networks (CNNs)

• Methods for interpreting signals in the data captured by CNN

features

• Results provide many interpretable connections and contrasts

between histology and genetics
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Collaborators

• Statistics: Jan Hannig, J.S. Marron

• Pathology: Benjamin Calhoun, Joseph Geradts

• Cancer genetics: Katherine Hoadley, Charles Perou

• Epidemiology: Linnea Olsson, Melissa Troester

• Computer science: Heather Couture, Marc Niethammer



Outline

1. Angle-based joint and individual variation explained

2. Analysis of CBCS data



Angle-based joint and individual variation

explained



Multi-block data setting

Fixed set of n observations, d1, . . . , dB , sets of variables

*multi-block, muti-view, multi-omic...
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Angle-based Joint and Individual Variation Explained

• Goal: find joint signals, if any exist, which are common to all data

blocks as well as individual signals which are specific to each block

• Statistical inference for joint signal extraction

• Computational bottlenecks: low rank singular value decomposition

and resampling procedures

(Lock et al., 2013; Feng et al., 2018)
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Two block joint and individual factor model

Observed random vectors x ∈ Rdx , y ∈ Rdy

x = Axc + Bxsx + ex

y = Ayc + Bysy + ey

• Random latent (scores) vectors: c, sx , sy

• Joint signal c ∈ RrJ , where rJ := joint rank

• Individual signals sx ∈ Rrx , sy ∈ Rry

• Random noise vectors ex , ey

• All random vectors are independent of each other

• Fixed loadings matrices Ax ,Ay ,Bx ,By

AJIVE takes a different approach than maximum likelihood estimation
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AJIVE as matrix decomposition

Observed data blocks X 1, . . . ,XB , X b ∈ Rn×db

Decompose each data block into joint, individual and noise terms

X b = Jb + I b + E b for b = 1, . . .B

J = col-span(J1) = · · · = col-span(JB) (1 subspace)

Ib = col-span(I b) for b = 1, . . . ,B (B subspaces)

J ⊥ Ib for b = 1, . . . ,B
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JIVE decomposition (n=3 samples)
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Canonical correlation analysis (CCA)

Observed data blocks X ∈ Rn×dx ,Y ∈ Rn×dy (mean centered)

First find the most correlated directions

After finding first k − 1 components,

maximize
wx ,wy

corr(Xwx ,Ywy )

s.t. ||Xwx ||2 = ||Ywy ||2 = 1

Xwx ⊥ Xwx,1, . . . ,Xwx,k−1

Ywx ⊥ Ywx,1, . . . ,Ywx,k−1

• Loadings vector wx,k ∈ Rdx (similarly for y)

• Scores vector ux,k := Xwx,k ∈ Rn (similarly for y)

• Canonical correlation ρk := corr(ux,k, ux,k)

• Common scores ck = ux,k + uy ,k

for k = 1, . . . ,min(dx , dy ).

(Hotelling, 1936) 6
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Principal angle analysis (PAA)

Subspaces X ,Y ⊆ Rn of dimensions dx , dy

First find the closes pair of directions

After finding first k − 1 components,

minimize
ux ,uy 6=0

angle(ux , uy )

ux ∈ X , uy ∈ Y
ux ⊥ ux,1, . . . , ux,k−1

uy ⊥ uy,1, . . . , uy,k−1

• Principal vector ux,k ∈ Rn (similarly for y)

• Think of ux,k as either a 1-dimensional subspace or a unit vector

with a fixed orientation

• Principal angle θk := angle(ux,k, uy ,k)

for k = 1, . . . ,min(dx , dy ).

(Bjorck and Golub, 1973; Edelman et al., 1998) 7
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Principal Angle Analysis

CCA = principal angle analysis of col-span(X ), col-span(Y )

ρk = cos(θk), principal vectors = CCA scores
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Angle between two random vectors

• Isotropic random direction v ∈ Rn

• span(v) where v ∼ N(0, In)

• Uniform distribution over directions i.e. Grassmanian(1, n)

• Random angle distribution

θ = angle(v1, v2)

where v1, v2 are independent, isotropic random directions
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Random principal angle distribution

• A ⊆ Rn, a random, isotropic d dimensional subspace

• Sample A ∈ Rn×d with iid N(0, 1) entries

• A = col-span(A)

• Uniform distribution on d dimensional subspaces in Rn i.e.

Grassmanian(d, n)

θ ∼ RPA(p, q) random principal angle

1. Sample isotropic d dimensional subspace A
2. Sample isotropic p dimensional subspace B
3. θ = smallest principal angle between A and B
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Joint rank selection with random direction bound (two blocks)

Observed data blocks X ∈ Rn×dx ,Y ∈ Rn×dy (mean centered)

Idea: retain principal vectors/CCA components which are “closer

together than random”

• Compute observed principal angles between

col-span(X ), col-span(Y )

θ ∈ Rmin(dx ,dy )

• Let θthreshold = 5th percentile of RPA(dx , dy ) and let r̂J be the

smallest j s.t. θj < θthreshold

• Classical CCA rank selection method known as Roy’s latent root test

(Johnstone, 2008)
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B ≥ 2 blocks generalization

• SUMCORR-AVGVAR CCA (Kettenring, 1971; Nielsen, 2002;

Asendorf, 2015)

• Subspace flag mean (Draper et al., 2014)

• Random direction bound generalizations

• Any partially shared structure (Feng et al., 2018)

• Fully shared structure only (in progress, unpublished)
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Flag mean

Subspace flag mean: finds the “most central” subspace of a collection of

B ≥ 2 subspaces (Draper et al., 2014)

• For B = 2, the flag mean is the average of the CCA scores

c = ux + uy

• For B ≥ 2, a similar relation holds for SUMCORR-AVGVAR CCA
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Key components of AJIVE

• Joint rank estimation, r̂J

• Random direction bound

• Wedin bound

• Common scores/flag mean summarize joint information

• C ∈ Rn×r̂J

• Joint and individual spaces

• Estimated joint subspace spanned by common scores

Ĵ = col-span(C)

• Estimated individual information is orthogonal to joint space

Îx , Îy ⊆ col-span(C)⊥

14



Key components of AJIVE

• Joint rank estimation, r̂J

• Random direction bound

• Wedin bound

• Common scores/flag mean summarize joint information

• C ∈ Rn×r̂J

• Joint and individual spaces

• Estimated joint subspace spanned by common scores
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AJIVE three step procedure

Details in Feng et al. (2018)
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Analysis of CBCS data



Carolina breast cancer study, phase 3 (CBCS)

• Population-based study of black and white women with invasive

breast cancer diagnosed between 2008-2013 in North Carolina

• 1191 subjects available in phase 3

• Histology

• Pathologist selected regions of interest

• Average of four 1mm cores per patient

• PAM50 expressions

• Other clinical variables

• ER status, clinical Her2 status, histology type, proliferation score,

PAM50 subtype, age, race, etc

(Troester et al., 2017; Allott et al., 2018)
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Image patch representation

• Preliminary stain normalization Macenko et al. (2009)

• Background mask estimated with weighted combination of Otsu’s

method and the Triangle method (Zack et al., 1977; Otsu, 1979)

• Patches with more than 90% background are ignored

17



Image feature extraction

• CNN features extracted from each patch

• Transfer learning

• Mean pool of last convolutional layer of VGG16

• Cores are represented by an average of their patch features

• Subjects are represented by an average of their cores

18



AJIVE output

• X histology ∈ R1,191×512, X genetic ∈ R1,191×50

• Estimated AJIVE ranks

• Joint: 7

• Genetic individual: 25

• Image individual: 76

• Quantities of interest (conceptually 3 PCAs)

• Common normalized scores and common loadings

• Image individual scores and loadings

• Genetic individual scores and loadings

19



First joint component, neural features loadings vector

20



Image signal interpretation

Goal: understand what visual signals are associated with a given loadings

vector (mode of variation)

• Multi-scaled approach

• For each end (positive/negative) of each AJIVE component we

study

• Patient level similarities: cores of top 15 patients (i.e. patients with

most negative/positive scores)

• Important features within each patient: representative patch views of

top 15 patients

21



Representative patch view

Representative patches are selected by projecting each patch’s features

onto a loadings vector then picking the top patches
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Pathology review

component end homogeneous
tumor

cellularity

tubule

formation

nuclear

grade

adipocytic

stroma

collagenous

stroma
lymphocytes necrosis

1 positive no low yes 1, 2 yes yes no no

negative yes high no 3 no limited yes yes

2 positive no variable yes 3 focal yes few no

negative yes moderate/high yes 2 focal yes no no

3 positive no variable yes 3 yes limited yes no

negative yes moderate/high no 3 no yes no no
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First joint component, negative end

Tumor infiltrating lymphocytes

24



First joint component, negative end

High nuclear grade tumor cells
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First joint component, positive end

Mostly normal breast structure e.g. ducts, collagenous stroma
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First joint component, positive end

Mostly normal breast structure e.g. ducts, collagenous stroma
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First joint component genetics loading vector

• Top negative genes associated with high tumor cell proliferation and

tend to have low expression levels in normal breast tissue

• Top positive genes tend to have high expression levels in normal

breast tissue

27



First joint component and PAM50 subtypes

• Basal-like clusters on the negative end

• Separated from other subtypes: Her2 (AUC = 0.87), Luminal A

(0.98), Luminal B (0.89), Normal-like (0.97)

• Luminal B and Her2 (in the middle) are separated from Normal-like

(0.82/0.88) and Luminal A (0.87/0.90)
28



First joint component associations with other covariates

• Tumor grade

• High-grade on negative end

• High vs. low AUC = 0.94

• Histological type

• Ductal on negative end

• Ductal vs. lobular AUC = 0.79

• Estrogen receptor status

• ER negative on negative end

• Postive vs. negative AUC = 0.883

• Strong, negative correlation with

proliferation score

• Risk of reoccurrence PT

• ROR-PT high on negative end

• High vs. low AUC = 0.999

29



First joint component associations with other covariates

• Tumor grade

• High-grade on negative end

• High vs. low AUC = 0.94

• Histological type

• Ductal on negative end

• Ductal vs. lobular AUC = 0.79

• Estrogen receptor status

• ER negative on negative end

• Postive vs. negative AUC = 0.883

• Strong, negative correlation with

proliferation score

• Risk of reoccurrence PT

• ROR-PT high on negative end

• High vs. low AUC = 0.999

29



First joint component associations with other covariates

• Tumor grade

• High-grade on negative end

• High vs. low AUC = 0.94

• Histological type

• Ductal on negative end

• Ductal vs. lobular AUC = 0.79

• Estrogen receptor status

• ER negative on negative end

• Postive vs. negative AUC = 0.883

• Strong, negative correlation with

proliferation score

• Risk of reoccurrence PT

• ROR-PT high on negative end

• High vs. low AUC = 0.999

29



First joint component associations with other covariates

• Tumor grade

• High-grade on negative end

• High vs. low AUC = 0.94

• Histological type

• Ductal on negative end

• Ductal vs. lobular AUC = 0.79

• Estrogen receptor status

• ER negative on negative end

• Postive vs. negative AUC = 0.883

• Strong, negative correlation with

proliferation score

• Risk of reoccurrence PT

• ROR-PT high on negative end

• High vs. low AUC = 0.999

29



First joint component associations with other covariates

• Tumor grade

• High-grade on negative end

• High vs. low AUC = 0.94

• Histological type

• Ductal on negative end

• Ductal vs. lobular AUC = 0.79

• Estrogen receptor status

• ER negative on negative end

• Postive vs. negative AUC = 0.883

• Strong, negative correlation with

proliferation score

• Risk of reoccurrence PT

• ROR-PT high on negative end

• High vs. low AUC = 0.999

29



Negative end of second joint component picks out Luminal B

Luminal B vs: Basal (AUC = 0.905), HER2 (0.933), Luminal A (0.760),

Normal (0.950)
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Second joint component, negative end morphology

Intratumoral channels of stromal cells that are surrounded by cancer cells

Currently being validated as morphological feature of Luminal B cancers
31
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Negative end of third joint component picks out molecular Her2

Molecular Her2 vs: Basal (AUC= 0.947), Luminal A (0.940), Luminal B

(0.833), Normal (0.950)
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Histology individual components

Variation related to tumor microenvironment*

• High fat content (component 1)

• Mucinious carcinoma (component 2)

• Degraded samples (component 3)

*PAM50 genes do not describe the tumor microenvironment (Perou

et al., 2000)
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Genetic individual components

Technical variational as well as additional PAM50 subtype information

• Overall expression level (component 1)

• Luminal A vs. Normal (component 2)

• Top left: estrogen signaling pathway

• Middle: proliferation

• Bottom right: normal myoepithelium and Basal-like
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Paper available on arxiv

Carmichael et al. (2019): https://arxiv.org/pdf/1912.00434.pdf

https://arxiv.org/pdf/1912.00434.pdf


Future directions in statistical data integration

• Multi-view clustering

• Each view has a set of clusters

• Model connections between clusters in different views

• Estimation of partially shared structures for B > 2 blocks

• Modeling multiple, complex data objects



Future directions in integrative cancer research

• Validate Luminal B morphology

• Survival

• Independent replication

• AJIVE/cluster analysis with other modalities (protein, copy number,

multiplex immunofluorescence, etc)



Questions?
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